Assessment of quantum dot infrared photodetectors for high temperature operation
نویسندگان
چکیده
Investigation of the performance of quantum dot infrared photodetectors QDIPs in comparison to other types of infrared photodetectors operated near room temperature is presented. The model is based on fundamental performance limitations enabling a direct comparison between different infrared material technologies. It is assumed that the performance is due to thermal generation in the active region. Theoretical estimations provide evidence that the QDIP is suitable for noncryogenic operation especially in long-wavelength infrared region, where conventional HgCdTe photodiodes are not viable. Hence it is expected that improvement in technology and design of QDIP detectors will make it useful for practical application. The higher operating speed of QDIP and multispectral capability are considerable advantages in comparison with thermal detectors. Comparison of theoretically predicted and experimental data indicates that, as so far, the QDIP devices have not demonstrated their potential advantages and are expected to posses the fundamental ability to achieve higher detector performance. Poor QDIP performance is generally linked to nonoptimal band structure and control over the QDs size and density. © 2008 American Institute of Physics. DOI: 10.1063/1.2968128
منابع مشابه
Modeling of High Temperature GaN Quantum Dot Infrared Photodetectors
In this paper, we present calculations for different parameters of quantum dot infrared photodetectors. We considered a structure which includes quantum dots with large conduction-band-offset materials (GaN/AlGaN). Single band effective mass approximation has been applied in order to calculate the electronic structure. Throughout the modeling, we tried to consider the limiting factors which dec...
متن کاملHigh-performance mid-infrared quantum dot infrared photodetectors
Quantum dot infrared photodetectors (QDIPs) have emerged as attractive devices for sensing long wavelength radiation. Their principle of operation is based on intersublevel transitions in quantum dots (QDs). Three-dimensional quantum confinement offers the advantages of normal incidence operation, low dark currents and high-temperature operation. The performance characteristics of mid-infrared ...
متن کاملOn the detectivity of quantum-dot infrared photodetectors
We report on the analysis of thermally-limited operation of quantum-dot infrared photodetectors ~QDIPs!. A device model is developed and used to calculate the QDIP detectivity as a function of the structural parameters, temperature, and applied voltage, as well as to determine the conditions for the detectivity maximum. The QDIP detectivity is compared with that of quantum-well infrared photode...
متن کاملQuantum-dot infrared photodetectors: a review
Quantum-dot infrared photodetectors (QDIPs) are positioned to become an important technology in the field of infrared (IR) detection, particularly for high-temperature, low-cost, high-yield detector arrays required for military applications. High-operating temperature (≥150 K) photodetectors reduce the cost of IR imaging systems by enabling cryogenic dewars and Stirling cooling systems to be re...
متن کاملQuantum-dot infrared photodetectors: Status and outlook
This paper reviews the present status and possible future developments of quantum-dot infrared photodetectors (QDIPs). At the beginning the paper summarizes the fundamental properties of QDIPs. Next, an emphasis is put on their potential developments. Investigations of the performance of QDIPs as compared to other types of infrared photodetectors are presented. A model is based on fundamental p...
متن کامل